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Introduction

In 1967, A. Wilansky has introduced the
concept of US spaces. In 1968, C.E. Aull studiecheso
separation axioms between theahd T, spaces, namely,
S; and S. Next, in 1982, S.P. Arya et al have introduced
and studied the concept of semi-US spaces andtaso
made study of s-convergence, sequentially semedlos
sets, sequentially s-compact notions. G.B. Navlagi
studied P-Normal Almost-P-Normal, Mildly-P-Normal
and Pre-US spaces. Recently S. Balasubramanian and
P.Aruna Swathi Vyjayanthi studiedNormal Almost-v-
Normal, Mildly-v-Normal and v-US spaces. Inspired
with these we introduce sggormal Almost- spg
Normal, Mildly- spgNormal, spgUS, spgS; and speS,.
Also we examine spgonvergence, sequentially spg
compact, sequentially spmpntinuous maps, and
sequentially sub spgontinuous maps in the context of
these new concepts. All notions and symbols whieh a
not defined in this paper may be found in the appabe
references. Throughout the paper X and Y denote
Topological spaces on which no separation axiomes ar
assumed explicitly stated.

Preliminaries
Definition 2.1: AO X is called

(i) g-closed if cl A1 U whenever Al U and U is open in
X. (i)
pg-closed if pcl(A) O U whenever Al U and U is
preopen in X. (iii)
spgclosed if pcl(A) O U whenever Al U and U is sp-
open in X.

Definition 2.2: A space X is said to be

(i) T, (Ty) if for any x# y in X, there exist (disjoint) open
sets U; V in X such thatUJ and y1V. (i)
weakly Hausdorff if each point of X is the interSen of
regular closed sets of X. (i)
normal[resp: mildly normal] if for any pair of dajt
[resp: regular-closed]closed setg &hd F , there exist
disjoint open sets U and V such thattFU and 5 O V.

(iv) almost normal if for each closed set A andleac
regular closed set B such thahB = @, there exist
disjoint open sets U and V such thdflld and B1V.

(v) weakly regular if for each pair consisting ofegular
closed set A and a point x such thahA{x} = @, there
exist disjoint open sets U and V such thaflXJ and
ADV. (vi) A subset A
of a space X is S-closed relative to X if every eosf A

by semiopen sets of X has a finite subfamily whose
closures cover A.

(vii) Rq if for any point x and a closed set F withix in

X, there exists a open set G containing F but not x

(viil) Ry iff for x, y O X with c{x} # cl{y}, there exist
disjoint open sets U and V such that clfx}lJ, cl{y} OV.

(ix) US-space if every convergent sequence hastlgxac
one limit point to which it converges. (x)
preUS space if every preonvergent sequence has
exactly one limit point to which it converges.

(xi) pre-S, if it is preUS and every sequence &xpre
converges with subsequence of<preside points.
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(xii) pre-S; if it is preUS and every sequence&xin X
pre-converges which has no psale point.

(xiii) is weakly countable compact if every infi@i
subset of X has a limit point in X.

(xiv) Baire space if for any countable collectidictosed
sets with empty interior in X, their union also hexapty
interior in X.

Definition 2.3:  LetA/7X. Then a point x is said to be a
() limit point of A if each open set containing x contains
some point y oA such that % y.

(i) To—limit point of A if each open set containing x
contains some point y ok such that ci{x}# cl{y}, or
equivalently, such that they are topologically idist

(i) pre-To—limit point of A if each open set containing x
contains some point y & such that pc{x} #
pcl{y}, or equivalently, such that they are topoloaily
distinct.

Note 1: Recall that two points are topologically
distinguishable or distinct if there exists an opsst
containing one of the points but not the other;
equivalently if they have disjoint closures. In tfathe
Tg—axiom is precisely to ensure that any two distinct
points are topologically distinct.

Example 1:Let X = {a, b, ¢, d} and = {{a}, {b, c}, {a,

b, c}, X, ¢}. Then b and c are the limit points but not the
To—limit points of the set {b, c}. Further d is gdimit
point of {b, c}.

Example 2:Let X = (0, 1) and = {@, X, and U, = (0, 1—
In), n=2, 3,4, ..} Then every point of X is a limit
point of X. Every point of X1, is a To—limit point of X,
but no point of Jis a T—limit point of X.

Definition 2.4: A set A together with all its g~limit
points will be denoted bygFclA.

Note 2: i. Every T—limit point of a sefA is a limit point
of the set but the converse is not true in general.
ii. In Te—space both are same.

Note 3. Ry—axiom is weaker than Faxiom. It is
independent of thegFaxiom. However T= Ry+T,

Note 4: Every countable compact space is weakly
countable compact but converse is not true in gdner
However, a T-space is weakly countable compact iff it
is countable compact.

spgTo LIMIT POINT
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Definition 3.01: In X, a point x is said to be a sfig—
limit point of A if each speppen set containing x
contains some point y ofA such thatspgc{x} #
spgcly}, or equivalently; such that they are
topologically distinct with respect to sfgpen sets.

Note 5: regular open set> open set= pre-open set>
spgopen set we have

r-To—limit point = Telimit point = preTlimit
point = spg Te—limit point

Example 3:Let X = {a, b, ¢, d} and = {@, {b}, {a, &,
{b, ¢,{a, b, ¢, X}. For A={a, b, c}, aand b argpg-
To-limit point.

Definition 3.02: A set A together with all its sp§—
limit points is denoted by fspgclA)

Lemma 3.01:f x is aspg To—limit point of a set A then x
is spglimit point of A.

Lemma 3.02:

(i) If X is spgTs—space then evergpgTo—limit point
and evenspglimit point are equivalent.

(iIf X is r-To—space then evergpgTy—limit point and
everyspglimit point are equivalent.

Theorem 3.03For x#y X,
(i) x is aspgTe-limit point of {y} iff x_spgcKy}
and y spgcl{x}.
(i) x is not aspgTyIlimit point of {y} iff either
xLspgcKytor spgci{x} = spgcKy}.
(iii) x is not aspgTgIlimit point of {y} iff either
x[BpgcKytor yspgckx}.

Corollary 3.04:
(i) If x is aspgTg—limit point of {y}, then y cannot
be aspglimit point of {x}.
(i) If spgcl{x} = spgcl{y}, then neither x is spg
To—limit point of {y} nor y is aspgTg—limit
point of {x}.
(iii) If a singleton set A has repg To—limit point in
X, then spgclA = spgcK{x} for all X
spgcl{A}.

Lemma 3.05:In X, if x is aspglimit point of a set A,
then in each of the following cases x becomes spg
To—limit point of A ({x}# A).

() spgcl{x}#spgcKy} for y /A, x2y.

(i) spgckx} = {x}

(iii) X is aspgTs—space.

(iv) AAQx} is spgopen
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spgTo AND spgR; AXIOMS, i =0,1

In view of Lemma 3.6(iii), spgTo—axiom
implies the equivalence of the concept of limitrgaf a
set with that ospgT—limit point of the set. But for the
converse, if X1 spa{y} then spaci{x} # spgl{y} in
general, but if x is aspgTe-limit point of {y}, then
spgek{x} = spaeky}

Lemma 4.01:n a space X, a limit point x of {y} is a spg-

To—limit point of {y} iff spgcl{x}# spgcly}.

This lemma leads to characterize the equivalenspgf
Tolimit point andspgdimit point of a set as the spg-
To—axiom.

Theorem 4.02The following conditions are equivalent:

(i) Xis aspg-§ space

(i) Every spg-limit point of a set A is a spg-limit
point of A

(iii) Every r-limit point of a singleton set {x} is a
spg-T—limit point of {x}

(iv) For any x, y in X, % vy if x/7spgcl{y}, then x is
a spg-B-limit point of {y}

Note 6: In aspgT—space X if every point of X is a r-
limit point of X, then every point of X ispgT—limit
point of X. But a space X in which each point ispy-
To—limit point of X is not necessarilyspgT,—space

Theorem 4.03The following conditions are equivalent:
(i) Xis aspg-R space
(i) For any x, y in X, if &/ spgcKy}, then x is not a
spg-k—limit point of {y}
(i) A point spg-closure set has no spgHimit
point in X
(iv) A singleton set has no spg-Timit point in X.

Theorem 4.04:n a spg-RBspace X, a point x is spgrT
limit point of A iff every spg-open set containirg
contains infinitely many points of A with each dfief x
is topologically distinct

Theorem 4.05X is spg-R space iff a set A of the form A
= [7spgcl{Xi =1 1o n} @ finite union of point closure sets
has no spg-glimit point.

If spgR, space is replaced by ¢Rpace in the above
theorem, we have the following corollaries:

Corollary 4.06:The following conditions are equivalent:
(i) Xisar-R space
(i) For any x, y in X, if X/ spgcKy}, then x is not a
spg-T—limit point of {y}
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(i) A point spg-closure set has no spgHimit
point in X
(iv) A singleton set has no spg-Timit point in X.

Corollary 4.07:1n an rR—space X,

(i) If a point x is rp-limit point of a set then every
spg-open set containing x contains infinitely
many points of A with each of which x is
topologically distinct.

(i) If a point x is spg-Flimit point of a set then
every spg-open set containing X contains
infinitely many points of A with each of which x
is topologically distinct.

(ii)If A = 7 spgcl{X i =1 1 n} @ finite union of point
closure sets has no spg-limit point.

(iV)If X = 7 spgcl{X i =1 0 nt then X has no spgsF

limit point.

Various characteristic properties spg-Tg—limit points
studied so far is enlisted in the following theorem

Theorem 4.08: In a spg-B-space, we have the
following:
(i) A singleton set has no spg-limit point in X.
(i) A finite set has no spgHlimit point in X.
(i) A point spg-closure has no set spgHimit
point in X
(iv) A finite union point spg-closure sets have no set
spg-T—limit point in X.
(V) Forx, Y7X, XJTo— spgcKy} iff x = y.
(vi) For any x, y7 X, x# y iff neither x is spgyF
limit point of {y}nor y is spg-g~limit point of
{x}
(vii) For any x, Y7 X, x# y iff To— spgcl{x} nTo—
spgcly} = @
(viil)Any point x°X is a spg-§limit point of a set A
in X iff every spg-open set containing x contains
infinitely many points of A with each which x is
topologically distinct.

Theorem 4.09: X is spg-Riff for any spg-open set U in
X and points x, y such thatX/J, y/UJ, there exists a
spg-open set V in X such thdy/ U, x/V.

Lemma 4.10:In spg-R space X, if x is a spggHimit
point of X, then for any non empty spg-open sehéke
exists a non empty spg-open set V such thay,\k//

spgcl(V).

Lemma 4.11:1n a spg- regular space X, if x is a spg-T
limit point of X, then for any non empty spg-opehl,
there exists a non empty spg-open set V such that

spgcl(VY U, x7spgcl(V).
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Corollary 4.12:In a regular space X,

(i) If x is a spg-§limit point of X, then for any
non empty spg-open set U, there exists a non
empty spg-open set V such that spgel{y)) x/7
spgcl(V).

(i) If x is a To—limit point of X, then for any non
empty spg-open set U, there exists a non empty
spg-open set V such that spgclV), x/7/

spgcl(V).

Theorem 4.13:f X is a spg-compact spgrRpace, then
X is a Baire Space.

Proof: Let {A,} be a countable collection a&fpg<losed
sets of X, each Ahaving empty interior in X. Take ;A
since A has empty interior, Adoes not contain argpg-
open set say §J Therefore we can choose a poinilp
such that ¥A,. For X is spg+egular, and
yO(XOA)nUg, aspgopen set, we can find spg-open
set U in X such that YU, spgclU,) O(XOAD)NU,.
Hence { is a non emptyspgopen set in X such that
spgclU,)0Uy and spgel(U)nA; = @ Continuing this
process, in general, for given non emgpg-open set |
1, We can choose a point of, ywhich is not in thespg-
closed set Aand aspg-open set Ycontaining this point
such thatspgcl(U,) 0OU,.; and spgclU,)nA, = ¢@. Thus
we get a sequence of nested non engpiyclosed sets
which satisfies the finite intersection propertyefefore
n spgcl(U,) # @ Then some Xn spgc(U,) which in
turn implies that kKU, ; asspgc(U,)0U,.; and XJA, for
each n.

Corollary 4.14:1f X is a compact spg-Fspace, then X is
a Baire Space.

Corollary 4.15:Let X be a spg-compact spg-$pace. If
{A.} is a countable collection of spg-closed sets in X
each A having non-empty spg-interior in X, then there is
a point of X which is not in any of thg. A

Corollary 4.16:Let X be a spg-compact-Bpace. If {4}
is a countable collection of spg-closed sets ieach A
having non-empty spg- interior in X, then thera igoint
of X which is not in any of the,A

Theorem 4.17:Let X be a non empty compact spg-R
space. If every point of X is a spg-limit point of X then
X is uncountable.

Proof: Since X is non empty and every point ispm-T,-
limit point of X, X must be infinite. If X is couable, we
construct a sequence gpg- open sets {\} in X as
follows:
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Let X = Vy, then for x is aspgTg-limit point of X, we
can choose a non empgpg-open set Yin X such that
V, OViand x0 spaglV,. Next for % and non emptgpg-
open set Y, we can choose a non empfyg-open set Y
in X such that ¥ OV, and %[0 spglVs. Continuing this
process for each,yand a non emptgpg-open set 'y, we
can choose a non empg-open set V., in X such that
Ve OVand %0 spaElV pag.

Now consider the nested sequencspfclosed

setsspaelV, O spaelV, O spalVs O......... O spglV, 0.

Since X isspg<ompact and §pclV .} the sequence
of spg<¢losed sets satisfies finite intersection property.
By Cantors intersection theorem, there exists am X
such that ¥l spglV,. Further x1X and X3V, which is
not equal to any of the points of X. Hence X is
uncountable.

Corollary 4.18:Let X be a nhon empty spg-compact spg-
R;-space. If every point of X is a spg-limit point of X
then X is uncountable

spg-To-IDENTIFICATION SPACES AND spg-
SEPARATION AXIOMS

Definition 5.01: Let (X, 7) be a topological space and let
O be the equivalence relation on X defined hyyxiff
spgc{x} = spgcfy}

Problem 5.02:show that Xly iff spgc{x} = spgcly} is
an equivalence relation

Definition 5.03: The space (¥ Q(Xy)) is called the spg
To—identification space ofX, 1), where X is the set of
equivalence classes of O and Q(g) is the
decomposition topology ongX

Let B¢ (X,7) - (Xo, Q(%)) denote the natural map

Lemma 5.04:f x/7X and A7 X, then X7spgclA iff every
spgopen set containing x intersects A.

Theorem 5.05:The natural map R(X,7) - (X, Q(X))
is closed, open andyP(Px(O)) = O for all Q7J
PO(X,7) and (%, Q(X%)) is spgTo

Proof: Let OO PO(X,r) and let @ Py(O). Then there
exists XJO such that f(x) = C. If yOIC, thenspgcly} =
spgc{x}, which, by lemma, implies ¥O. Sincer /7
PO(X,1), then B (Px(U)) = U for all UJz, which
implies R is closed and open.

Let G, HIX, such that G£ H; let X1G and yIH. Then
spgc{x} # spgc{y}, which implies xOspgcfy} or
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yOspgc{x}, say xOspgcly}. Since Py is continuous and
open, then GA = Py{X Cspgc{y}} OPO(X,, Q(X%)) and
HOA

Theorem 5.06The following are equivalent:

(i) X is spgR (i) Xo = {spgcl{x}: xX} and (i) (X,
Q(Xy) is spgt

Proof: (i) = (ii) Let COX,, and let XIC. If yOIC, then
yOspgc{y} = spgc{x}, which implies Clspgc{x}. If
yOspgc{x}, then xOspgcly}, since, otherwise,
xOXspgc{y} OPO(X,7) which implies
spgc{x} LXspgc{y}, which is a contradiction. Thus, if
yOspgc{x}, then xOspgc{y}, which implies spgc{y} =
spgc{x} and yOC. HenceX, = {spgci{x}: x OX}

(iy=(iii) Let A # BOXo. Then there exists X,
yOX such that A =spgcix}; B = spgcly}, and
spgc{x} nspgc{y} = @ Then AIC = K
(XOspgcly}) OPOXo, Q(%)) and BIC. Thus (X,
Q(X) is spgTy

(iii) = (i) Let xOUOaGO(X). Let yIU and G,
C, OX, containing x and y respectively. Then O x
spgc{y}, which implies C  # C, and there existspg
open set A such that,CA and GUA. Since R is
continuous and open, theflB = R (A) 0 xOSPGO(X)
and XJB, which implies ylspgc{x}. Thus spgc{x} /7U.
This is true for allspgc{x} implies nspgcix} /7 U.
HenceX is spgRy

Theorem 5.07(X, 1) isspgRy iff (Xo, Q(X)) isspg T,

The proof is straight forward from theorems 5.0% an
5.06 and is omitted

Theorem 5.08:X isspgT;; i = 0,1,2. iff there exists a
spgcontinuous, almost—open, 1-1 function from ¢X,
into aspgT; space ; i=0,1,2. respectively.

Theorem 5.09:f /£ (X, 7)- (Y, 0) is spgcontinuous,
spgopen, and X, #X such that spgci{x} = spgcl{y}, then
spgckAx)} = spgckAy)}-

Theorem 5.10The following are equivalent

() (X,7)isspgTo

(i) Elements of ¥are singleton sets and

(iiThere exists a spgcontinuous, spgopen, 1-1
function/: (X, 7) - (Y, 0), where (Yg) isspgTy

Proof: (i) is equivalent to (ii) and (B> (iii) are straight
forward and is omitted.
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(i) = (i) Let x, yOX such thatf(x) # f(y), which
implies spgc{f(x)} # spgc{f(y)}. Then by theorem
5.09,spgclx} # spgcly}. Hence (X, 1) is spg-b

Corollary 5.11:A space (X7) isspgT; ; i=1,2iff (X, 1
)isspgT,_1; i=1,2, respectively, and there exists a
spg<ontinuous spgopen, 1-1 functiory: (X, 7) into a
spg-Ty space.

Definition 5.04:f:X - Y is point-spg-closure 1-1 iff for
x, yOX such thaspgc{x} # spgcly}, spgcf f(X)} #
spgc{ f(y)}-

Theorem 5.12:

MOIf £ (X, 7)> (Y, 0) is point—spg<closure 1-1 and (X,
T) isspgy, thenfis 1-1

@(ihif £ (X, 1) - (Y, 0), where (X,r)and (Y,o) are spg-
To then fis point—spg<elosure 1-1 ifffis 1-1

The following result can be obtained by combining
results for spg-¢ identification spaces, spg-induced
functions and spg-Bpaces; i=1,2.

Theorem 5.13X isspgR ; i = 0,1 iff there exists apg-
continuous , almost-open  pointspg€losure 1-1
function /£ (X, 7 ) into a spgR space; i = 0,1
respectively.

spgNormal; Almost spghormal and Mildly spg-
normal spaces

Definition 6.1: A space X is said to be spg-normal if for
any pair of disjoint closed sets Bnd b , there exist
disjoint spg-open sets U and V such thaflRU and K O

\%

Example4: Let X ={a, b, c} andt ={@, {&}, {b, ¢, X}.
Then X is spg-normal.

Example 5: Let X ={a, b, c, § with T = {q, {a}, {b},
{d}, {a, b}, {a, d}, {b, d}, {a, b, c}, {a, b, d}, X} is spg
normal, normal and almost normal.

We have the following characterization of spg-nditpa
Theorem 6.1 For a space X the following are
equivalent:

(i) Xis spg-normal.

(iiy For every pair of open set$ andV whose union is
X, there exist spg-closed sé&sandB such thatA/U, B
[N andALB = X.

(i) For every closed sefF and every open seB
containingF, there exists a spg-open détsuch that
FJ Cspgcel(UY7G.

Proof: (i)=(ii): Let U andV be a pair of open sets in a
spg-normal spac¥ such thaX = U/NV. ThenX-U, X-V
are disjoint closed sets. Since X is spg-normaietiesist
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disjoint spg-open setd; andV; such that  X-U/ U,
andX-V/V;. LetA = X-U;, B = X-\{. ThenA andB are
spg-closed sets such theflJ, BV andAZB = X.
(b) =(c): Let F be a closed set ard be an open set
containingF. ThenX—F andG are open sets whose union
is X. Then by (b), there exist spg-closed d&tsand W,
such thatw; 7 X-FandW, 7 G and W;/W, = X.
ThenF /7 X-W, X—G [7 X-W, and (X-W) n(X-W) = @
Let U = X-W; andV= X-W,. ThenU andV are disjoint
spg-open sets such that U X-V/G. As X-V is spg-
closed set, we have spgcl(U) /[IX-V and
F U Cspgel(UYG.
(c) = (a): LetF; andF, be any two disjoint closed sets
of X. PutG = X—F,, thenF;nG = @ F,/G whereG is an
open set. Then by (c), there exists a spg-opeb sd#tX
such that; 77U /7spgcl(U) Z%G. It follows thatF, /7 X—
spgcl(U) = V, say, thenV is spg-open andUnV = @
HenceF; andF, are separated by spg-open détsndV.
ThereforeX is spg-normal.
Theorem 6.2 A regular open subspace of a spg-normal
space is spg-normal.
Example 6 Let X ={a, b, ¢, & with T = {@, {a}, {b},
{d}, {a, b}, {a, d}, {b, d}, {a, b, ¢}, {a, b, d}, X} is spg-
normal and spg-regular.
However we observe that every spg-normal spggace
is spg-regular.
Definition 6.2 A functionf:X - Y is said to be almost —
spg-irresolute if for each x in X and each spg-
neighborhood V off(x), spgclf (V)) is a spg-
neighborhood of x.
Clearly every spg-irresolute map is almost spgsohate.
The Proof of the following lemma is straightforwaadd
hence omitted.
Lemma 6.1 f is almost spg-irresolute iff'(V) O spg-
int(spgclf(V)))) for every VOSPGQY).
Lemma 6.2 f is almost spg-irresolute ifispgc(U)) O
spgclf(V)) for every UISPGQX).
Proof: Let UOSPG{X).Suppose ¥ spgc(f(U)). Then
there exists V1 SPG{y) such that Wf(U) = @. Hencef~
Y(V)nU= @. Since UISPG{X), we have spg-inspgclf
%Vv))) n spgc{U) = @. Then by lemma 6.1f *(V)n
spgcl(U) = @ and hence ¥f(spgc(U)) = @. This implies
that yIf(spgclU)).
Conversely, if VISPGY), then W = X- spgc(f
%(v)))O SPGQX). By hypothesis,f(spgc(W))O spgcl
(f(W))) and hence X- spg-irpgclfi(V)) =
spgctW)Of (spgclf(W))) Df(spgcl f(X-f(V))]) Of B
YspgclY-V)] = f {Y-V) = X-f}(V). Thereforef(V)O
spg-intspgc(f*(V))). By lemma 6.1,f is almost spg-
irresolute.

Now we prove the following resuh the
invariance of spg-normality.
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Theorem 6.3 If f is an M-spg-open continuous almost
spg-irresolute function from a spg-normal spacento@
space Y, then Y is spg-normal.
Proof: Let A be a closed subset of Y and B be an open
set containing A. Then by continuity Hff'(A) is closed
andf'(B) is an open set of X such tHat(A) O fY(B). As
X is spg-normal, there exists a spg-open set U sugh
thatf*(A) O U O spgclU)d £1(B). Thenf(f1(A))O f(U)
0 f(spgclU)) O f(FY(B)). Sincef is M-spg-open almost
spg-irresolute  surjection, we obtain OA f(U) 0O
spgclf(U)) 0 B. Then again by Theorem 6.1 the space Y
is spg-normal.
Lemma 6.3 A mappingf is M-spg-closed if and only if
for each subset B in Y and for each spg-open set X)
containingf(B), there exists a spg-open set V containing
B such that*(Vv)0OU.
Theorem 6.4 If f is an M-spg-closed continuous
function from a spg-normal space onto a space é&f) th
is spg-normal.
Proof of the theorem is routine and hemoéted.

Now in view of lemma 2.2 [9] and lemma 6v&
prove that the following result.
Theorem 6.5 If f is an M-spg-closed map from a
weakly Hausdorff spg-normal space X onto a space Y
such thatf*(y) is S-closed relative to X for eaciy ,
then Y is spg-71.
Proof: Let y; and ¥ be any two distinct points of Y.
Since X is weakly Hausdorfff *(y,) and f (y,) are
disjoint closed subsets of X by lemma 2.2 [9]. AssX
spg-normal, there exist disjoint spg-open setahd \,
such thaf *(y;)) O V;, for i = 1,2. Sincd is M-spg-closed,
there exist spg-open sets bBihd U containing y and ¥
such thatf %(U;) O V; for i = 1,2. Then it follows that
U;nU, =@. Hence Y is spg-I

Theorem 6.6:For a spacX we have the following:

(a) If X is normal then for any disjoint closed sets A and
B, there exist disjoint spg-open sets U, V such #al

U and BO V;

(b) If X'is normal then for any closed set A and any open
set V containing A, there exists an spg-open sef
such that AlUOspgc(U) OV.

Definition 6.2: X is said to be almost spg-normal if for
each closed set A and each regular closed settBthat
AnB = @, there exist disjoint spg-open sets U and V such
that ADU and BJV.

Clearly, every spg-normal space is almost spg-nhrma
but not conversely in general.

Now, we have characterization of almost spg-noryali
in the following.

Theorem 6.7: For a space X the following statements are
equivalent:
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(i) Xis almost spg-normal

(ii) For every pair of sets U and V , one of whislopen
and the other is regular open whose union is Xrethe
exist spg-closed sets G and H such thatUGHOV and
GOH = X.

(iii) For every closed set A and every regular openhB
containing A, there is a spg-open set V such thaiv
spgc(V) O B.

Proof: (a)=(b) Let U be an open set and V be a regular
open set in an almost spg-normal space X sucHxh&t

= X. Then (X-U) is closed set and (X-V) is regutdémsed
set with (X-Un (X-V) = @. By almost spg-normality of
X, there exist disjoint spg-open setg &hd \j such that
X-UDOU;and X-VO Vy. Let G = X- Y and H = X-\,.
Then G and H are spg-closed sets such that GAOV
and GJH = X.

(b) = (c) and (c}= (a) are obvious.

One can prove that almost spg-normality is alsalexg
open hereditary.

Almost spg-normality does not imply almost spg-
regularity in general. However, we observe thatrgve
almost spg-normal spgpRpace is almost spg-regular.
Theorem 6.8 Every almost regulaspg€ompact space
X is almost spg-normal.

Recall that a functioft X~ Y is called rc-continuous if
inverse image of regular closed set is regularetios

Now, we state the invariance of almost spg-normait
the following.

Theorem 6.9 If f is continuous M-spg-open rc-
continuous and almost spg-irresolute surjectiomnfran
almost spg-normal space X onto a space Y, then Y is
almost spg-normal.

Definition 6.3: A space X is said to be mildly spg-
normal if for every pair of disjoint regular closedts k
and K of X, there exist disjoint spg-open sets U and V
suchthatFOUand K O V.

Example 7 Let X ={a, b, ¢, 8 with T = {@, {a}, {b},

{d}, {a, b}, {a, d}, {b, d}, {a, b, c}, {a, b, d}, X} is
Mildly spgnormal.

We have the following characterization of mild spg-
normality.

Theorem 6.10 For a space X the following are
equivalent.

(i) Xis mildly spg-normal.

(i) For every pair of regular open sets U andviose
union is X, there exist spg-closed sets G and Hh $at
GOU,HOVand GIH = X.

(iii) For any regular closed set A and every regulpen
set B containing A, there exists a spg-open seuths
that AUOspgc(U)OB.
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(iv) For every pair of disjoint regular closed sethere
exist spg-open sets U and V such thatlA BOV and

spgc(U)n spgc(V) = .

This theorem may be proved by using the arguments
similar to those of Theorem 6.7.

Also, we observe that mild spg-normality
regular open hereditary.
Definition 6.4 A space X is weakly spg-regular if for
each point x and a regular open set U containing {x
there is a spg-open set V such thavxd clv 0O U.
Example 8: Let X = {a, b, c} andt = {q, {b}{a, B {b,
c}, X}. Then X is weaklyspgregular.
Example 9: Let X = {a, b, c} andt = {@, {a} ,{b} {a, &,
X}. Then X is not weaklgpgregular.
Theorem 6.1 If f : X - Y is an M-spg-open rc-
continuous and almost spg-irresolute function fram
mildly spg-normal space X onto a space Y, then Y is
mildly spg-normal.
Proof: Let A be a regular closed set and B be a regular
open set containing A. Then by rc-continuity fof f~
Y(A) is a regular closed set contained in the regatsen
setf(B). Since X is mildly spg-normal, there exists a
spg-open set V such th&t(A) OVO spgc(V) O f (B)
by Theorem 6.10. A§ is M-spg-open and almost spg-
irresolute surjection, it follows th&Vv)O SPGJY) and
ADO f(V) O spgc(f(V))O B. Hence Y is mildly spg-
normal.
Theorem 6.12 If f: X - Y is rc-continuous, M-spg-
closed map from a mildly spg-normal space X onto a
space Y, then Y is mildly spg-normal.

spgyUS spaces

Definition 7.1:A sequence < is said to bespg
converges to a point x of X, written assx- %9 x if
<X,> is eventually in evergpgopen set containing X.

Clearly, if a sequence sxr-converges to a point x of X,
then <x> spgconverges to Xx.

Definition 7.2:X is said to bespgUS if every sequence
<X,> in X spgconverges to a unique point.

Definition 7.3: A set F is sequentiallspgclosed if
every sequence in$pgconverges to a pointin F.

Definition 7.4: A subset G of a space X is said to be
sequentiallyspgcompact if every sequence in G has a
subsequence whidpgconverges to a point in G.

Definition 7.5: A point y is a spgcluster point of
sequence < iff <x,> is frequently in everspgopen
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set containing x. The set of ajpgcluster points of <
will be denoted bgpgcl(x,).

Definition 7.6: A point y isspgside point of a sequence
<x,> if y is a spgcluster point of <x but no
subsequence of sx spgconverges to y.

Definition 7.7: A space X is said to be

() spgS if it is spgUS and every sequence &Spg
converges with subsequence ofxspgside points.

(ii) spgS; if it is spgUS and every sequence &xin X
spgconverges which has mpgside point.

Using sequentially continuous functions, we define
sequentiallyspgcontinuous functions.

Definition 7.8: A function f is said to be sequentially
spgcontinuous at X1 X if f(x,) - *P?f(x) whenever <}

- %P9 %, If f is sequentiallyspgcontinuous at all KX,
thenf is said to be sequentialbpgcontinuous.

Theorem7.1: We have the following:

(i) EveryspgT, space ispgUS.

(i) EveryspgUs space ispgT;.

(i) X is spgUS iff the diagonal set is a sequentially
spgclosed subset of X x X.

(iv) XisspgT,iffitis bothspgR; andspgUsS.

(v) Every regular open subset o8pgUS space ispg
Us.

(vi) Product of arbitrary family o$pgUS spaces ispg
us.

(vii) Every spgS, space isspgS; and EveryspgS;
space ispgUs.

Theorem 7.2:In aspgUS space every sequentialipg
compact set is sequentialipgclosed.

Proof: Let X bespgUS space. Let Y be a sequentially
spgcompact subset of X. Let gxbe a sequence in Y.
Suppose that % spgconverges to a point in X-Y. Let
<X,p> be subsequence of gxthat spg
converges to a point M Y since Y is sequentiallgpg
compact. Also, let a subsequence,xof <x,> spg
converge to XJ X-Y. Since <x,> is a sequence in the
spgUS space X, x = y. Thus, Y is sequentialigg
closed set.

Theorem 7.3: Let f and g be two sequentiallyspg
continuous functions. If Y isspgUS, then the set
A = {x| f(xX) =g(x)} is sequentiallyspgclosed.

Proof: Let Y be spgUS and suppose that there is a
sequence <% in A spgconverging to XJ X. Sincef and

g are sequentiallyspgcontinuous functionsf(x,) - "
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f(x) and g(x,) - P9 g(x). Hencef(x) = g(x) and XJA.
Therefore, A is sequentialgpgclosed.

Sequentially subspg€ontinuity

In this section we introduce and study the concepts
sequentially sub-spg-continuity, sequentially neagpg-
continuity and sequentially spg-compact preserving
functions and study their relations and the propeft
Spg-US spaces.

Definition 8.1: A functionf is said to be

(i) sequentially nearly spg-continuous if forckagoint
xOX and each sequence &x- P x in X, there exists a
subsequence s of <x> such that &x,)>— f(x).

(i) sequentially sub-spg-continuous if for eacbirp
xOX and each sequence &x- P x in X, there exists a
subsequence s of <x,> and a point MY such that
<f(x)> —*%y.

(i) sequentially spg-compact preserving fK) is
sequentially spg-compact in Y for every sequentiall
spg-compact set K of X.

Lemma 8.1: Every functionf is sequentially sub-spg-
continuous if Y is a sequentially spg-compact.

Proof: Let <x> - PIx in X. Since Y is sequentially spg-
compact, there exists a subsequenig,§} of {f(x,)}
spg-converging to a pointd¥. Hencef is sequentially
sub-spg-continuous.

Theorem 8.1: Every sequentially nearly spg-continuous
function is sequentially spg-compact preisey.

Proof: Assumef is sequentially nearly spg-continuous
and K any sequentially spg-compact subset of X. Let
<y,> be any sequence in(K). Then for each positive
integer n, there exists a poinfX K such that  f(x,) =

Yo Since <x> is a sequence in the sequentially spg-
compact set K, there exists a subsequengg><of <x,>
spg-converging to a point X1 K. By hypothesisf is
sequentially nearly spg-continuous and hence theists

a subsequence gxof <x,> such thatf(x) - P f(x).
Thus, there exists a subsequence><gf <y,> spg-
converging to f(x)Of(K). This shows thatf(K) is
sequentially spg-compact setin Y.

Theorem 8.2: Every sequentially preontinuous
function is sequentially spg-continuous.

Proof: Let f be a sequentially preontinuous and <%
- P xOX. Then <x> -P x. Sincef is sequentially pre
continuous,f(x,) - "f(x). But we know that <@ P x
implies <x%> - % x and hencé(x,) — P?f(x) impliesf is
sequentially spg-continuous.
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Theorem 8.3: Every sequentially spg-compact
preserving function is sequentially sub-spg-cordimsi
Proof: Suppose f is a sequentially spg-compact
preserving function. Let x be any point of X and,>xx
any sequence in X spg-converging to X. We shalbtien
the set {x| n=1,2,3, ...} by A and K = Al {x}. Then

K is sequentially spg-compact since,)(x-% x. By
hypothesisf is sequentially spg-compact preserving and
hencef(K) is a sequentially spg-compact set of Y. Since
{f(xn)} is a sequence if(K), there exists a subsequence
{f(xn} of { f(xn)} spg-converging to a pointl¥f(K). This
implies thaff is sequentially sub-spg-continuous.

Theorem 8.4: A functionf: X - Y is sequentially spg-
compact preserving iffx: K - f(K) is sequentially sub-
spg-continuous for each sequentially spg-comparsetu
K of X.

Proof: Suppose f is a sequentially spg-compact
preserving function. Therf(K) is sequentially spg-
compact set in Y for each sequentially spg-compatK

of X. Therefore, by Lemma 8.1 abovg,: K- f(K) is
sequentially spg-continuous function.

Conversely, let K be any sequentially spg-compato$

X. Let <y,> be any sequence iffK). Then for each
positive integer n, there exists a pointlK such that
f(xn) = y». Since <x> is a sequence in the sequentially
spg-compact set K, there exists a subsequengge of
<Xy> Spg-converging to a pointX K. By hypothesisf

k: K- f(K) is sequentially sub-spg-continuous and
hence there exists a subsequencg><yf <y,> spg-
converging to a point[y f(K).This implies thatf(K) is
sequentially spg-compact set in Y. Thiis sequentially
spg-compact preserving function.

The following corollary gives a sufficient conditidor a
sequentially  sub-spg-continuous function to be
sequentially spg-compact preserving.

Corollary 8.1: If f is sequentially sub-spg-continuous
and f(K) is sequentially spg-closed set in Y for each
sequentially spg-compact set K of X, theh is
sequentially spg-compact preserving function.
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